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ABSTRACT

Transfer of polarized light in anisotropic plane-
parallel media, consisting of arbitrarily oriented
nonspherical particles, is considered. Adding
equations and a complete set of invariant imbedding
equations for reflection and transmission matrices
are derived.

1. INTRODUCTION

In the present paper, we study the vector radi-
ative transfer equation relevant to scattering media ,
consisting of randomly distributed particles. Unlike
most of publications on this subject (see e.g. Refs.
1-21 and references therein), we do not use the common
assumption that the scattering media are macroscopi-
cally isotropic. We only assume that the media are
plane-parallel, and that scattering occurs without
frequency redistribution.

The main purpose of our paper is to generalize
several important equations derived previously for
isotropic plane-parallel atmospheres. In the next
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section, we shall briefly discuss the main relation-
ships relevant to the scattering of a plane electro-
megnetic wave by a single nonspherical particle and to
the transfer of polarized light in a sparse, random
distribution of such particles. Then, in Sec. 3,
adding equations will be derived, which enable one to
calculate reflection and transmission matrices of a
combined slab provided that these quantities for each
subslab are known. Also, calculation of the internal
radiation field will be considered. In Sec. 4, the
adding equations will be used to derive a complete set
of invariant imbedding equations for the reflection
and transmission matrices. Some consequences, valid
for homogeneous layers, will be drawn. Finally, in
Sec. 5, we shall briefly discuss the main results of
our work.

Among previous publications on radiative transfer
in anisotropic media, we note Refs. 22-31.

2. RADIATIVE TRANSFER EQUATION

2.1. Scattering of a plane electromaegnetic wave by a
single nonspherical particle

Consider a plane electromagnetic wave
81(3) = 81 8, + EL 9.) exp(ikfn,) (1)
= By ©; + By 93) exp i

incident upon a nonspherical particle in a direction
specified by the unit vector ﬁi = (uy, ¢;). Here,

k = 2i/L , ALis a free space wavelength, u; = cosé; ,
ei is a zenith engle, and ?i is an azimuth angle; by
subscripts 1 and 2 we label ©- and Y-components of the
electric field,respectively, éi and ?i being the cor-
responding unit vectors. The origin of the spherical
coordinate system is assumed to be inside the scat-
tering particle. Note that 1, = 6,%¢;. The time
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factor exp(-iwt) is assumed and omitted throughout
the paper. In the far-field zone (kr>> 1), the
scattered wave becomes spherical and is given by (cf.
Refs. 32 and 33)

E°(¥) = B(r,3,) &, + E(x,B)) ¢, , &, = ¥/r,
E8($)e7 =0 , (2)
ES ikr E? . A A
1 - e F(dg,1,) l , a2 3|,
-]
E2 E2 A4 A1

where P is an amplitude scattering metrix, which
depends (besides ﬁi and ﬁs) upon the size, shape,
and refractive index of the scattering particle,
as well as on its orientation with respect to the
coordinate system.

In this paper, we use the Stokes parameters of
the incident plane wave and the scattered spherical
wave defined as (cf. Refs. 32 and 33)

I = E1Ej + E2E; s

Q = E.ET - EZE; ,

U = E,E} + EE} (3)
V=i (EE] - E,E])

where the asterisc denotes complex conjugation. Also,
the Stokes vector (or the intensity vector) is

I-= (I,Q,U,V)T, where "T" denotes matrix transposition.
Writing the elements of the amplitude scattering
matrix as A, = & exp(ibk), k=1,...,4 , and defining
auxiliary quantities
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* 2
M = AAy =8y

Sy = % (AkAj + AjAk) = a8, cos(by-b;) (4)
Dyy = % 1 (AA 3 - A Ak) = - a8, sin(b-b)

we have32’33

~ 1 ~ A N ~4

I® « = Z(ag,ny) IW , (5)

where 2 is the phase matrix with elements

Zqq = (M Mo+ 3+M )
Zyp = ? (-M,+M,-M +M4) ,
213 = 532 + Syy >
214 = D32 = Dgq >
Zyy = % (My+MosMy-M,)
Byp = 5 (Mo+My-MyM))
Za3 = S33 = 841 >
224 = D32 + D41 ,
(6)
231 = S42 + 331 ’
Z3p =542 = 831
Z33 = 821 + 843 ’
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Z = =D - D

34 = “Daq = Dy3 s
241 = Dga + D3y
Zyp = -Dyp - D3y
Z43 = Dpq = Dy3
Zag = 521 = Sy3 -

Through Eqs. (4) and (6), the elements of the
phase matrix are expressed in 7 independent real
variables 8y s k=1,...,4, and bk’ k=1,2,3 .
Therefore, there must be 9 relations between the 16
elements of the phase matrix ij, k,;j=1,...,4.32
These relations are given in Ref.34(see also Refs. 35
and 36).

As was shown by Saxon,37 the amplitude scattering
matrix obeys the reciprocity relation

F(ag,5,) = B #(-a,,-8) B , (7

~

where B = diag(1,-1). From Eqs. (4)-(7), we have

2(g,0,) = P 27(-d,,-2) P , (8)
where P = diag(1,1,-1,1).

For numerical calculation of the light scattering
properties of a single nonspherical particle, several
computational methods have been proposed. They are
reviewed in Refs. 38-42.
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2.2, Multiple scattering and the equation of transfer

The field E(T), multiply scattered by randomly
distributed scatterers, is not a plane or a spherical
wave. Furthermore, this field does not depend upon a
"direction of propagetion". Therefore, we can not
insert directly the vector E(¥) into Egs. (3) to
define the Stokes parameters, which must satisfy the
scattering law Eq. (5). Preliminarly, the field E(F)
has to be expanded in plane waves as follows:

B(%) = Yan o(R) exp(iki®) , n.-8(R) =0 , (9)
where

+1 2n
Sdﬁ cees = S du S d‘f oo .

-1 0

For extensive discussion,we refer the reader to Refs,
43-49; here we cite only the final result, which is a
consequence of the theory of multiple scattering of
electromagnetic waves in sparse, discrete random media.

Quasi-homogeneous random electromagnetic field
can be characterized by 4 real-valued functions I(n),
Q(n), U(n), and V(n) of the same physicel dimension,
which may be interpreted as the Stokes parameters of a
light beem propagating in the direction n. The first
Stokes parameter is the specific intensity of light
and through the relation

dE = I(n) n ds 4t do

is expressed in the amount of radiant energy which is
transported during a time interval d4t across an
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element ds into a solid angle do about the direction
B. The intensity vector I(a) = [I(ﬁ),Q(ﬁ),U(ﬁ),V(ﬁ.)]T
of radiation,multiply scattered in a sparse distribu-
tion of randomly positioned, independently scattering
perticles, obeys the vector radiative transfer

equation

d I(z,n) ..
W ————— = n_(2) K(z,n) I(z,n)
dz P
+ np(z) Sdﬁ' Z(z,h,2') I(z,a') , (10)

where the scattering medium is assumed to be plane-
parallel, and the z-axis is directed towards the
inward normal to the upper boundary of the medium. In
Eq. (10), np is the number density of scaftering
particles, Z is the phase matrix, and K is the
(4x4) extinction matrix, which is expressed in the
elements of the amplitude scattering matrix as follows:

K(a) = &% k(a)
kjj(ﬁ) = - Im (A1(ﬁ,ﬁ) + A2(ﬁ,a)) ’ J=1,...,4 ,
k,,(n) = kyo(n) = Im (4,(8,0) - A,(R,R)) ,

ky5(R) = k3y(R) = - In (A (R,B) + Ay(8,8)) ,

k14(ﬁ) k41(ﬁ) = Re (A4(ﬁ,ﬁ) - A3(ﬁ,ﬁ)) , (11)
k23(ﬁ) = - k32(ﬁ) = Im (A4(ﬁ,ﬁ) - A3(ﬁ,ﬁ)) ,
k24(ﬁ) = - k,5(0) = - Re (A4(ﬁ,ﬁ) + A3(ﬁ,ﬁ)) .
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The extinction matrix and the phase matrix,
occurring in the equation of tramnsfer, are averaged
over the ensemble of noncorrelated, independent
scatterers. In calculating the ensemble averages, the
gsize, shape, refractive index, and orientation
distributions of the scattering particles must be
taken into account. The quadratic relations between
the elements of the phase matrix of a single particle
are, generally, lost in the averaging process. A
gselection of inequalities for the elements of the
ensemble averaged phase matrix is given in Ref. 34.

Like the phase matrix of a single scatterer, the
ensemble averaged phase matrix obeys the reciprocity
relation Eq. (8). Using Eqs. (7) and (11), we easily
derive the reciprocity relation for the extinction
matrix:

K(a) = D K¥(-B) P . (12)

The problem of a numerical calculation of the
ensemble averaged extinction and phase matrices is,
generally, very difficult. One of the methods for
solving this problem, which is based on the Waterman's
T-matrix approach,so was proposed by Tsang et al.51

3. THE ADDING EQUATIONS

In what follows, we consider a finite slab
[zt;zb] , where by subscripts "t" and "b" the top and
bottom values are labeled, respectively. Using the
definition

z
t(z) = Sdz' np(z') (13)

- 00
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we have

a I(¢,8) . . . .
4 ——— = R(t,8) I(t,8) + Jai
at

(14)

Let the (4X4) matrix i(t1,t2,ﬁ) be the solution of
the equation

d i(t1’t2gﬁ) ~ -~ ~ -~
u = K(t,,n) X(t,,t,,n) (15)
1 1’72

subject to the initial condition
X(tz;ta:i) = 1 ’ (16)

where 1 is the (4X4) unit matrix. Obviously, the matrix
X has the property

X(ty,8',8) X(t',4,,8) = X(t,,t,,8) .
We express the radiation field I(t n) for te Ltt’tb]

in the intensity vectors I(tt,m) and I(tb,-m) as
follows:

I(t,8) = X(t,t,,8) I(ty,@)
+« Sair v De,m,ar) I(e,,a)

+ Saar v 07 (t,m,a) I(t,,-a0) , (17)

1(t,-a) = Samr v OCt,8,8") (4,8
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+ i(t,tb,-ﬁ) i(tb,-ﬁ)

+ Saar v B*(¢,m,4%) I(ty,-2") . (18)

Here, m = (v,¢), -m = (-v,9), v = |ul,

1 2n
sdﬁ coo = de Sd(p... ,
0] 0

t, = t(z;), and t, = t(z,) ; the matrices 4,D,0%, ana
D* describe the response of the scattering slab to the
radiation incident on its boundaries. The reflection
and transmission matrices of the slab are defined as

ﬁ(ﬁ,ﬁ') = ﬁ(tt,ﬁoﬁ') ’

T(,@') = D(t,,@,Aa') ,
(19)

~ “~“ A ok, 3 A A
R*(m,m') =U (tb,m,m') s

Let us divide the slabd [tt;tbl into subslabs
[t,5t] and [t ;%,]1. Applying Eqs. (17)-(19)
recursively to the subslabs and to the combined slab
[ty3t,] (or, equivalently, using Ambartsumyan's -
Chandrasekhar's principle of invarianc952’1), we can
easily express the reflection and transmission matri-
ces of the combined slab and the internal radiation
field i(t ,ﬁ) at the interface between the subslabs in
the reflection and transmission matrices of the
subslabs. We have
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0(t,@,8,) = Ry(@,8,) X(t,t,,3,)

+ Sdi' v ﬁz(i,ﬁ') ﬁ(t,ﬁ',io) ,

« faar v Rj@,a0) §Ce,a,a)

Ax A A
U (t,m,no)

‘* ~ ~ ~ -~
= R1(n,mo) X(t,tb,-mo)
+ sdm' v' R1(m,m’) D (t,n',no) ’
- 3 (a,m,)

PEP-URTE NCR- DR A CX-UR- T N

+

+

+

+

i(tt,tg-i) ﬁ(t ,ﬁ,io)

fanr v (@m0 Bee,a0a)
Tz(ﬁ,ﬁo) x(t,tt,ﬁo)
x(tb,t,i) D(t,ﬁ,ﬁo)

fam' v T,(a,a') D(t,a',8)

R (8,8,) = Ry(a,@,)

T (@,8,)

+

+

+

fod ~ A¥ A A
X(tb,t,m) U (t,m,no)
faze v By@,a0) 0%Ce,m,E)

33,8

o) I(t,tb,-ﬁo)

X(ty,t,-2) D (t,A,a,)

fam' v Bj@,ar) B(e.@,m)

303

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



304 MISHCHENKO

where by subscripts "1" and "2" we label the scatte-
ring properties of the upper and lower subslabs,
respectively. The matrices U D U and D , 8pecifying
the radiation field at the interface between the
subglabs, can be calculated from Egqs. (20)-(23) by
iterations. Thereon, the reflection and transmission
matrices of the combined slab can be found from Egs.
(24)-(27).

Further, if the matrices ﬁ1(t1,ﬁ,ﬁ'), 51(t1,ﬁ,ﬁ'),

Uy(t,,8,'), and Dy(t,,@,&') for t,€lt,;t], and the
matrices Uy(ty,@,@'), Dy(t,,@,a"), Up(t,,A,&'), and
5Z(t1,ﬁ,ﬁ') for t,e [t;tb] are known, the matrices
~ A A A A A A X ~A A a A A
U(t1,m,m'), D(t1,m,m'), ] (t1.m,m'), and D*(t1,m,m')
for the combined slab can also be easily calculated.
Using Eqs. (17) and (18), we find

U(t1 ,ﬁ,ﬁo) = U1 (t1 ,ﬁ,ﬁo)

~

+ X(ty,t,-) U(t,8,8 )

§aa' vt Dy(t,,8,a') OCt,4',8) ,  (28)

+

D(t,,m,m ) = Dy(t,,m,m,)

« S v OCe,,m,a0) OCe,E,8) ,  (29)
A%k A A okt ] A A hod ~
U (t1,m,m°) = U1(t1,m,m°) X(t,tb,-mo)

+ Saar v O ,m,a0) D(e,a,a) , (30)

ol A A ~k A A o ~
D (t1,m,mo) = D1(‘l:1 ,m,mo) X(t,tb,-mo)

~ N A% A A
+ X(t,,t,-m) D (t,m,m)

- ~% A A AX - -~
+ Sdm' v' D,(¢,,m,m") D (t,m',m,) (31)
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for t1é.[tt;t] , and

U(t1,ﬁ,ﬁ°) = U2(t1,ﬁ,ﬁ°) X(t,tt,ﬁo)

+ Sanr v' Uy(t,,m,8%) D(t,a',a,) ,  (32)

D(t,,@,m ) = Dy(ty,m,m,) X(%,ty,m,)

Y

+ X(t1,t,ﬁ) D(t,m,m,)

+ Sanr v Dy(t,,m,A0) D(t,Ar,E) ,  (33)
U (t,,m,m ) = U2(t1,m,mo)
~ PS ok 3 A A
+ X(t,,t,m) U (t,m,mo)

+ $air v Dy(¢,,m,a0) 07(L,a,E) L (34)

~ ok PSERPS A%k A A
D (t1,m,mo) = D2(t1,m,mo)
+ Sa@r vt Oy(e,,8,m") 07 (e,8%,8,)  (35)

for t1e Lt;tb] .
If the scattering medium is isotropic, we have

K(t,8) = -C__,(T) 1, (36)
X(t,,t5,8) = exp[-(Ty-T)/ul 1 , (37

where cext is the extinction cross-section, and

t
T(t) = gdt' Cor(t") (38)

is the optical depth. Inserting Eqs. (36)-(37) into
Eqs. (17)-(18) and (20)-(35), we obtain the well known
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equations derived, e.g., in Refs. 1,3,5,7,9,16, and
19.

It should be noted that convergence of the itera-
tive solution of Egs. (20)-(23) was proved only for
homogeneous isotropic subslabs.14 However, from
physical considerations we can expect the convergence
even for inhomogeneous anisotropic subslabs.

4. INVARIANT IMBEDDING EQUATIONS

Assuming At = t-tt << 1, using the equation of
transfer (14) and Eqs. (17)-(23), and neglecting all
terms proportional to (4t)® for n>1, we have

R, (@,@') = 2(t,,-@,4') at/(vw') ,

ot JPPNEPN

R1(m,m') = 2(tt,ﬁ1,-ﬁ') at/(vyv') ,
T,(R,A') = Z(t,,8,0') at/(vw')
T1(@,a') = B(ty,-m,-2') at/(vv')
E(t,6,,8) = 1 + 4t K(ty,@)/v, (39)
K(ty,t,-0) = 1 + at K(ty,-n)/v (40)
U(t,8,m,) = Ry(@,d,)

+ % R(#,@,) K(ty,a )

+ 4t fam R(m,a') Z(t,,A',8)

+ at Yamr $adr RGE,a') E(t,,E0,-2")

- RG",B) (41)
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~ ~ -~ A ~ ~ ~
D(t,m,8,) = &% 2(t,,d,@,)

(o]
+ 48 §air 2(t,,h,-2') RG',E) (42)

CEERERE R SRR NN

+ 4% §anr 2(t,,m,-00) PGEYLE) ., (43)
B*(t,8,8,) = T (@,B,)

- §aim R(E,&') Z(by,0",=R,) E(ty,t,,-@)

+ at $aar Samr R(A,A') Z(t,,B',-a")

- TGE) . (44)

Inserting Eqs. (39)-(44) into Eqs. (24)-(27), we derive

d ﬁ(ﬁ,ﬁ.o) A A A ~ ~
————2 = - R(m,m,) K(ty,m )/v,
dt,

1;,--1?1) R(ﬁ,ﬁo)/v

I =
ot

>

B>

Z(t, ,-m,m_)
o t o

fam' RGR,a') Z(t,,a',@,)
o)

fan' 2(t,,-d@,-2') R(AE)

TN

v
- fair $ain RGE,A') 2(t,,d',-5")

ﬁ(ﬁw,ﬁo) , (45a)

(o) _ N A A o -~
" = T(m,mo) K(tt’mo)/vo
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'
Id

1 X(ty,ty.m) Z(t,,d,m)

<
O

§amr F(a,a') Z(t,,a',8)
o

- L X(e,,0,m) Sai Z(ty,d,-8') RG',E,)

[}
4l=

A A A

- 5dﬁ' $dﬁ" T(m,m') Z(tt,ﬁ',-&")

. R(A" A, (46a)

a R"(a,m,) . e )
———-E:b—'—'—' = - "v_v-" X(tb,tt,m) Z(tt,m,-mo) X(tt)tb’-mo)

(o]
R(ty,ty,m) Saa' Z(ty,d,-a') B*

1
<l

(&',@,)

%o fair B(@,0') Z(ty,d",-m ) X(ty,ty,-R,)

am' Ydm" (ﬁ’ﬁv) 2(tt’ﬁ"-ﬁ") ,’i*(ﬁn’ﬁo),

(47a)

AR _ A A
dT(mm) -~ Ay K _ A A
— 0 L . K(t,,-@) T (R,m )/v
dt t °

o
LN g‘ g)
E?

B
N>

> ct -
<
8
'I
B
v
P>
~
ct
ct
4
)
E
v

dm" ﬁ(ﬁ,ﬁv) Z(tt’ﬁ"-ﬁ")

*

(@ By . (488)

Similarly, by setting 4t = tb-—t < 1, we can derive a
system of 4 equations, which have in the left-hand
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side the derivatives aR/dt,, daf/at,, aR*/at,, and
dT*/dtb, respectively. For brevity, these equations
are not given here; in what follows, they will be
referred to as Egs. (45b)-(48b).

Eqs. (45a)-(48a) and (45b)-(48b) form the
complete get of invariant imbedding equations for
the reflection and transmission matrices. They
should be supplemented with the initial conditions

ﬁ(a,ﬁo)l =0,
b=ty

T(ﬁ,ﬁo)l =0,
ty=ty

(49)

R*(a,ﬁo)l =0,
ty=ty

=0,

T*(m,m )l
ot:t
t b
where O is the (4X4) zero matrix.

For an isotropic scattering medium, we may use
Egs. (36)-(38) and the definitions

. . o Cc
Zi('l',u,u' ’?"?') = EAJL‘ Z(tynsn') y W= CSO& ’ (50)
sca ext

where Csca is the scattering cross-section, and w
is the single-scattering albedo, to reduce the inva-
riant imbedding equations to the form derived
earlier in Refs., 1 and 5.

Assuming uniqueness of solution of the invariant
imbedding equations (45a)-(48a) (or (45v)-(48b)),
subject to the initial conditions Egs. (49), we easily
find that the reflection and transmission matrices
obey the reciprocity relations

R(a,d,) = P ﬁ“‘(ao,ﬁ) P, (51)
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ol A A o “*T PN P -~

R (m,m ) = PR (mo,m) P, (52)
AA A g ‘*T A PN -~

For homogeneous slabs, a system of 4 nonlinear
integral equations for the reflection and transmission
matrices can be obtained by taking the sum of
conjugate equations (45a)-(45b), (46a)-(46b), (47a)-
(47v), and (488a)-(48b), respectively (this system of
equations is not given here for brevity). Owing to the

symmetry relation85’19

ﬁi(V,V' Q(P"P') = ﬁ;(v,v' ,?'-'P) ] (54)
%i(v,v',¢-¢') = &:(v,v',¢'~¢) ’ (55)

the number of independent equations for isotropic
homogeneous slabs is only 2. These equations may be
fgund in gefs. 5,12, and 18, By setting tb =00 and
dR/dt; = O , we obtain from Eq. (45a) the nonlinear
integral equation for the reflection matrix of a
semi-infinite, homogeneous anisotropic slab:

v Ro (@,8,) K(B)) - v, K(-R) Reo (i, )

[ ]
o]
1
B
-
B>
A

+ v Sam Roo (@,m') 2(51',510)

+ v, St B(-R, i) Reo(d',B))

+ v, Sair fain R (@,a') Z(R',-E")

Roo(A",d,) . (56)
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For isotropic media, analogous equations were derived
previously by Ambartsumyan53 for the scalar case and
Domke~ for the vector case.

One would expect that the nonlinear integral
equations for the reflection and transmission matrices
of a homogeneous anisotropic slab permit not only the
physically relevant solutions. The nonuniqueness
problem in solving the nonlinear integral equations
for isotropic media was extensively studied by De
Rooij and Domke.12

5. DISCUSSION

As stated above, the adding equations (20)-(35)
and the invariant imbedding equations (45)-(48) are a
generalized version of equations, which have been
derived earlier for isotropic plane-parallel media.
It is easily seen that all differences of Eqs. (20)-
(35) end (45)-(48) from the corresponding equations
for isotropic media are due to the following causes.

(i) In the transfer equation (14), the extinction
matrix occurs in place of the scalar extinction cross-
gsection. As a result, the single-scattering albedo

w = Csca/ ext and the optical depth (thickness) T
can not be introduced, and the matrix X(t1,t2,n)

appears instead of a quantity exp[-(f’-f‘)/u]

(ii) Generally, the phase matrix 2(ﬁ,ﬁ') depends on
each of the azimuth angles ¢ and ¢', whereas the
phese matrix of an isotropic medium depends only on
their difference. Therefore, the Pourier analysis can
not be effectively used to handle the azimuth
dependence of the phase matrix, reflection and
transmission matrices, and so on.

In addition, it should be noted that, generally,
only one of three symmetry relations for the matrix Zi
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(see e.g. Ref. 11) is satisfied by the matrix Z,
namely, the reciprocity relation Eq. (8). As a result,
the symmetry relationss’18

fti(v,v',q’-q") = B ﬁi(vav"?""f') B: ’
ai(v,V' 9?-(?') = 5 ‘ii(v)v' Y(P'-(P) f) ’

where D= diasg(1,1,-1,-1), are also lost as well as the
symmetry relations Egs. (54)-(55) for the reflection
and transmission matrices of a homogeneous isotropic
slab.

The adding equations and the invariant imbedding
equations can be used to calculate the intensity
vector of light scattered in arbitrary vertically-
inhomogeneous anisotropic slab. The general computati-
onal scheme may be as follows,

Consider a slab [tt,tb], which is illuminated by
radiation specified by intensity vectors I(t ,m) end
I(t -m) . The problem is to calculate the intensity
vector I(t n) for te [tyit,] o

It follows from Eqs. (17) and (18) that the
problem is reduced to the calculation of the matrices
G(6),0(+),5%(+),5%(+)  X(¢,t,), and X(¢,%,). For
calculating the matrices X(t,t,) and X(t,t,), Eq. (15)
is used subject to the initial condition Eq. (16).

The matrices U(t) D(t), i (t), and D" (t) are calculated
from Eqs. (20)-(23) by iterations. Finally, the
reflection and transmission matrices for the subslabs
[t;3t1 and [$;t,], occurring in Egs. (20)=-(23), are
calculaeted by a numerical solution of the invariant
imbedding equations (45a)-(48a) or (45b)-(48bv) .

The problem becomes much simpler if the slab can
be divided into a number of homogeneous subslabs. In
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that case, we can use computational schemes, which are
entirely based on the adding equations. These compu-
tational schemes can be developed as a direct extemsion
of those proposed for isotropic slabs (see e.g. Refs.
3,5,7,9,13,16,19,21,54-57 and references therein).
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